Поиск в библиотеке
BOOKS SHaring :

Книга "Программирование в теоремах и задачах"

Автор:
Название:
Жанр:
Здесь вы можете бесплатно скачать книгу "Программирование в теоремах и задачах".
Электронная книга находится в разделе "Учеба"
Вы можете оставить свой отзыв и обсудить книгу с другими читателями.
С п и с о к   к н и г   п о   а в т о р у

С п и с о к   к н и г   п о   а л ф а в и т у

А
Б
В
Г
Д
Е
Ж
З
И
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Щ
Э
Ю
Я
А
Б
В
Г
Д
Е
Ж
З
И
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Щ
Э
Ю
Я

Библиотека
Главная Каталог Новые поступления Популярная литература Как качать Чем читать Администрация Авторам и правообладателям
Разделы хранилища
АнекдотыБиографияБоевикГаданиеДетективДетскаяДокументальнаяДомДрамаЖенский романЖурналЗакон и правоИсторияКлассикаКомпьютерный ликбезКриминалЛирикаМедицинаМемуарыНаукаНаучная фантастикаПесниПолитикаПриключенияПсихологияРелигияСекс-учебаСказкаСловарьАнтропология и социологияСпортСтихиТриллерУчебаФилософияФентезиЭзотерикаЭкономикаЭнциклопедияЭротические и порно рассказыЮморIT-приколы


, Программирование в теоремах и задачах


НазваниеПрограммирование в теоремах и задачах
РазделУчеба
Размер1015012
Файлshen.rar
Дата добавления2002-04-06
Скачали848 раз
Скачать книгу в архиве RAR
Скачать книгу в архиве BZ2
Скачать книгу в архиве UCA
Читать книгу прямо на сайте открыв в браузере

Краткое описание/вступление:

ниренко).

     Пусть M - некоторое множество. Функция f, аргументами кото-
рой являются последовательности элементов множества M, а  значе-
ниями - элементы некоторого множества N, называется индуктивной,
если  ее значение на последовательности x[1]..x[n] можно восста-
новить по ее значению на последовательности  x[1]..x[n-1]  и  по
x[n],  т.  е.  если  существует  функция F из N*M (множество пар
, где n - элемент множества N, а m - элемент множества M) в
N, для которой

      f() = F (f (), x[n]).

     Схема алгоритма вычисления индуктивной функции:

  k := 0; f := f0;
  {инвариант: f - значение функции на }
  while  k<> n do begin
  | k := k + 1;
  | f := F (f, x[k]);
  end;

     Здесь f0 - значение функции  на  пустой  последовательности
(последовательности  длины  0). Если функция f определена только
на непустых последовательностях, то первая строка заменяется  на
"k := 1; f := f ();".

     Индуктивные расширения.

     Если функция f не является индуктивной, полезно  искать  ее
индуктивное  расширение  - такую индуктивную функцию g, значения
которой определяют значения f (это значит, что существует  такая
функция  t,  что  f  () = t (g ()) при
всех ). Можно доказать, что среди всех  индуктивных
расширений  существует  минимальное  расширение F (минимальность
означает, что для любого индуктивного расширения  g  значения  F
определяются значениями g).

     1.3.1.  Указать  индуктивные  расширения   для   следующих
функций:
   а)  среднее  арифметическое  последовательности вещественных
чисел;
   б) число элементов последовательности целых чисел, равных ее
максимальному элементу;
   в)  второй по величине элемент последовательности целых чисел
(тот, который будет вторым, если переставить члены в неубывающем
порядке);
   г) максимальное число идущих подряд одинаковых элементов;
   д) максимальная длина монотонного (не



Вместе с книгой "Программирование в теоремах и задачах" читатели смотрели:


•  / Программирование и кодирование
•  / Руководство по обеспечению безопасности личности и пред
•  / Сетевой этикет. Подборка статей
•  / Совершенствование памяти
•  / Спутник потребителя
•  / ТРИЗ - теория решения изобретательских задач.
•  / Теория передачи данных для пользователя модема
•  / Уголок инвестора
• Component.ru / Информация об аудио-компонентах
• Software Bisnes / Руководство по подготовке советского ПО для экспорта

Новые поступления в хранилище библиотеки:


• А. Гавльда / Я ее любила/Я его любила (отрывок) / 2008-01-12
• Ким Лоренс / Лоно Каридес / 2008-01-11
• Олег Смирнов / Эшелон / 2008-01-10
• Артур СПИНАКЕР / ТОРУС / 2008-01-10
• Гурин Артём / Я_выйду_рано_по_весне / 2008-01-10



BOOKS.SH - BOOKS SHaring @ 2009-2013, Книги в электронном виде.